
1 INRODUCTION  

Spurred by European Union directives such as 
WEEE (Waste Electrical and Electronic Equipment), 
ROHS (Reduction of Hazardous Substances in Elec-
trical and Electronic Equipment), and ELV (End of 
Life Vehicles), along with increased interest among 
US initiatives such as LEED (Leadership in Energy 
and Environmental Design), life cycle assessment 
(LCA) is becoming a common tool used in the 
measurement and evaluation of environmental per-
formance and overall sustainability. Life cycle as-
sessment is an analytical technique for assessing po-
tential environmental, social, and economic burdens 
and impacts, encompassing all stages of life cycle, 
from raw material production through end-of-life 
management. LCA provides metrics that can be used 
to measure progress toward sustainability (Keoleian 
and Spitzley 2006). 

As outlined by ISO 14040 series standards, any 
life cycle assessment requires a number of phases 
beginning with goal and scope definition, inventory 
analysis, impact assessment, and interpretation.  
Each of these phases, along with their associated da-

tabases and models, has significant associated uncer-
tainties. Decisions made regarding design develop-
ment and improvement, strategic planning, public 
policy making, or product marketing without recog-
nizing this uncertainty may potentially be flawed. 

A general motivation for quantifying uncertain-
ties is to increase the transparency of LCA data and 
results. Uncertainty is undeniably present in many 
aspects of analysis, and treating it explicitly will aid 
in several ways. This paper provides an overview of 
sources of uncertainty, methods for quantifying un-
certainty, and methods for propagating input and 
model uncertainties in order to determine their effect 
on uncertainties in the final estimated environmental 
impacts. An example application is used to demon-
strate how uncertainties in impacts can be used to 
support improved decision-making by users of LCA 
tools. Impacts include adding the ability to identify 
alternate systems whose environmental impacts ap-
pear to differ at first glance, but for which the im-
pacts are actually statistically insignificant due to 
uncertainties in the inputs. A second impact is the 
ability to identify important uncertainties and so fo-
cus uncertainty-reduction efforts in the most critical 
areas. 

TREATMENT OF UNCERTAINTIES IN LIFE CYCLE 
ASSESSMENT 

Jack W. Baker 
Michael D. Lepech 
Stanford University, Stanford, USA 

 

ABSTRACT:  Spurred by European Union directives along with increased interest among US initiatives, life 
cycle assessment (LCA) is becoming a common tool used in the measurement and evaluation of environ-
mental performance and overall sustainability. Life cycle assessment is an analytical technique for assessing 
potential environmental, social, and economic burdens and impacts of a given product or process, encompass-
ing all stages of life cycle, from raw material production through end-of-life management. LCA provides met-
rics that can be used to measure progress toward sustainability. A life cycle assessment includes a number of 
phases: goal and scope definition, inventory analysis, impact assessment and interpretation.  Each of these 
phases has significant associated uncertainties. Decisions made without regard to these uncertainties may be 
flawed. This paper describes common sources of uncertainty, methods for quantifying uncertainty, and meth-
ods for propagating input and model uncertainties in order to determine the resulting uncertainties in final es-
timated environmental impacts. An example application is presented to illustrate that even if only the most 
critical uncertainty sources are identified, it is feasible to obtain useful information about uncertainties in a 
given assessment. This application also illustrates the need to prioritize the many sources of uncertainty pre-
sent in a given LCA. There are many practical challenges to consider in this very broad field, but also a vari-
ety of areas in which further achievements can be made. This paper serves to illustrate opportunities to further 
apply the tools of probabilistic modeling to the important and rapidly growing field of life cycle assessment. 

 



After describing the importance of this topic and 
identifying tools for performing relevant analysis, 
prospects for future progress in this field are consid-
ered. There are significant practical challenges to 
implementing explicit uncertainty treatment, but also 
many areas in which further achievements can be 
made. The few examples where uncertainty has been 
treated explicitly in LCA assessments illustrate the 
opportunities that exist to further apply probabilistic 
modeling to this important and rapidly growing 
field. 

2 THE VALUE OF QUANTIFYING LCA 
UNCERTAINTIES 

A general motivation for quantifying uncertainties is 
to increase the transparency of LCA data and results. 
Uncertainty is undeniably present in many aspects of 
analysis, and treating it explicitly will aid in several 
ways, as outlined below. 

2.1 Decision support 
When making comparisons among design alterna-
tives, apparent differences in impacts may be mis-
leading if the uncertainty in impacts is large enough 
to overwhelm any relative differences between al-
ternatives. Quantification of these uncertainties will 
support informed decision making (Basson and 
Petrie 2004; Cowell et al. 2002; Lenzen 2006; 
2000). 

When design alternatives are being evaluated in 
the presence of significant uncertainties, large uncer-
tainties may make it impossible to determine 
whether one design alternative is truly superior to 
another. This type of situation arises frequently in 
other fields, and the statistics topic of hypothesis 
testing is a mature field used, for example, to evalu-
ate the true benefit of a new drug that is being con-
sidered for approval by a regulatory agency. In the 
field of LCA, Basson and Petrie (2004) have consid-
ered similar problems and termed their approaches 
“distinguishability analysis.” Whatever the specific 
name and technique, it is important to recognize that 
apparent differences in impacts from design alterna-
tives may be small enough relative to uncertainties 
in estimated impacts as to be insignificant. Consid-
eration of uncertainty is thus critical in this case for 
sound decision making. 

2.2 Transparency 
If model inputs are uncertain and the uncertainty is 
hidden or ignored by the analyst, then this lowers the 
credibility of the LCA. An opponent could propose 
alternative, valid, model inputs that lead to differing 
results. Without openly acknowledging the uncer-

tainty that leads to both sets of model inputs being 
plausible, there is no clear resolution to these situa-
tions, reducing the value of the LCA results (Wei-
dema 2000). 

2.3 Quality competition 
Reduced uncertainty (e.g., in databases) is desirable, 
and by transparently displaying uncertainties there 
will be increased motivation to improve data quality 
(Ciroth 2003). This is true both for general data 
sources as well as for individual case studies.  

2.4 Planning of information gathering exercises 
If resources are available to refine elements of an 
LCA analysis, it is helpful to understand what uncer-
tainties exist in a model (uncertainty quantification), 
and what uncertainties have the greatest impact on 
results and potential decisions (sensitivity analysis). 
Formal uncertainty treatment procedures, such as 
“pre-posterior analysis” in decision theory, can help 
to efficiently use resources to improve a model by 
collecting more data to reduce uncertainties 
(Benjamin and Cornell 1970). 

More concretely, a SETAC-Europe LCA working 
group on data availability and data quality has de-
veloped a framework for modeling data uncertainty 
and the Danish Environmental Protection Agency 
has proposed a data collection strategy for reducing 
uncertainty in life cycle impacts (LCI) (National 
Renewable Energy Laboratory 2007). 

3 TYPES OF UNCERTAINTY 

Uncertainty can refer to lack of knowledge (epis-
temic uncertainty) or inherent randomness (aleatory 
uncertainty) in any model input. A variety of spe-
cific uncertainty sources are listed below, with an 
emphasis on their relevance to specific issues in 
LCA. The varying types of uncertainty need not be 
treated differently, but their classification can serve 
as a useful accounting exercise to ensure that all 
relevant uncertainties are quantified. Other lists of 
uncertainty sources are provided elsewhere (Björk-
lund 2002; Lenzen 2006). 

3.1 Database uncertainty (e.g., missing or 
unrepresentative data) 

Available data in an LCA database may not exactly 
represent the quantity being studied. This can result, 
for example, from differences in the product/impact 
being studied or from regional or temporal differ-
ences in inventories/impacts (Danius 2002; Hui-
jbregts 2001; RTI International ; Schuurmans 2003; 
Sugiyama et al. 2005). This type of uncertainty will 



be considered in the example application below. 
With industrial production increasingly taking place 
in less developed countries, the uncertainty of both 
data collection and trustworthy reporting diminishes 
the validity of life cycle assessments based on these 
datasets. 

3.2 Model uncertainty 
The models relating design decisions to impacts may 
have uncertainties that could affect the quality of the 
assessment outputs. Simplified models may not cap-
ture exact cause-and-effect mechanisms, or data re-
gression may have the wrong functional form. There 
may be unknown interactions among model parame-
ters. This category can also more generally include 
lack of knowledge about the functioning of the sys-
tem being studied (Asbjomsen 1995).  The com-
bined use of Economic Input/Output Life Cycle As-
sessment (EIO-LCA) techniques with process-based 
LCA has been proposed to mitigate this uncertainty 
(Williams 2007).  However, such approaches do not 
address aleatory uncertainty associated with stochas-
tic variables such as discount (interest) rates for fu-
ture economic, social, or environmental costs or im-
pacts. 

3.3 Statistical/measurement error 
Estimating distributions of properties from a limited 
set of sample data creates statistical variability. The 
sample data may also have measurement errors, or 
the standards used to collect and quantify the data 
may not be known.  

3.4 Uncertainty in preferences 
An analyst’s choices regarding modeling of prefer-
ences and value judgments can play a large role in 
carrying out a life cycle assessment.  Decisions re-
garding LCA goal and scope definitions (i.e. func-
tional unit and input cut-off rules), allocation of co-
product impacts and recycling streams, determina-
tion of industry performance (average industry per-
formance, best-in-class, worst-in-class), and life cy-
cle impact assessment (LCIA) and characterization 
techniques can be treated as uncertainties.  Quantify-
ing analyst preference and judgment using uncer-
tainty techniques lends greater confidence in life cy-
cle assessments regardless of the skill and 
experience of the analyst. 

3.5 Uncertainty in a future physical system, relative 
to the designed system 

LCA is performed on a conceptual model that may 
not exactly represent the physical system that will be 
constructed. Differences may arise from lack of 
knowledge about what materials will be used in the 

system (e.g., more than one material supplier may 
meet the design specifications), future design 
changes, and human error.  Uncertainty is also de-
rived from inaccurate model of product use phase in 
terms of future service or maintenance schedules 
and end-of-life estimates. 

4 QUANTIFYING UNCERTAINTIES 

Quantifying uncertainties is an important step in ac-
counting for their effects when making decisions. It 
is easiest to quantify basic variables, and much more 
difficult to quantify outputs from complex or opaque 
models. Using this line of thinking, Notten and 
Petrie (2003) make an argument that model inputs, 
and their associated uncertainties, should be speci-
fied at the most basic possible level. This is consis-
tent with the longstanding approach in structural re-
liability of modeling “basic” random variables rather 
than “derived” random variables, to facilitate data 
collection and focus the uncertainty modeling on the 
true sources of uncertainty rather than derived func-
tions of these uncertainty sources (Melchers 1999). 
In some cases, using basic variables rather than de-
rived variables also makes it easier for sources of 
uncertainty to be specified as independent. 

Another area in which uncertainties must be 
quantified is database values. Understanding the 
quality of data from a database is of great impor-
tance, for quantifying uncertainty as well as plan-
ning to reduce uncertainties. Data quality rankings 
may be either qualitative or quantitative. While 
quantitative measures are clearly preferable in a 
formal uncertainty assessment, in some cases only 
qualitative measures are available. Due to the com-
plex environmental mechanisms between energy, 
materials, and emissions quantified in a life cycle 
inventory and any category endpoints (i.e. global sea 
level rise, deforestation), uncertainty in impacts will 
likely be more subjective than uncertainty in inven-
tory. In the past, LCA consulting firms such as 
Franklin Associates have published a Data Quality 
Index that ranged from A to E depending on the 
overall quality of the data point.  LCA practitioners 
should be confident in the use of “A” and “B” data 
points.  As the number of “D” and “E” points in-
creases, modelers should be more wary of the re-
sults.  This has been replaced somewhat by the es-
tablishment of statistical distributions for many 
datasets. An overview of existing implemented data  
is provided by Heijungs and Frischknecht (2005). 

If raw measurement data is available (e.g., from 
databases or case studies), then uncertainties might 
be calibrated using this data. Classical tools from 
probability and statistics, such as parameter estima-
tion and hypothesis testing, will be useful for this 



type of problem (Benjamin and Cornell 1970). In 
cases where data is not available, expert judgment 
may be required to quantify uncertainties. Experts 
may be able to use their experience to quantify the 
various uncertainties described above. A typical 
challenge using this approach is that the LCA ex-
perts may not be experienced with probabilistic 
modeling, and probabilistic modelers may not have 
the LCA experience necessary to accurately quantify 
uncertainties. The field of expert elicitation provides 
guidance on overcoming these challenges and ob-
taining quantifications that aren’t unduly biased the 
experts personal preferences or preconceived ideas 
(Arkes et al. 1997). 

5 PROPAGATING UNCERTAINTIES 

Typically, a fundamental question in an uncer-
tainty analysis is “to what extent do uncertainties in 
input values produce uncertainties in model out-
puts?” To do this, uncertainties must be “propa-
gated,” using one of several methods. There are a 
number of examples in the literature where LCAs 
have been performed with special care made to treat 
uncertainties. Most of these examples come from 
outside of the building industry (see, for example, 
Andræ et al. 2004; Basset-Mens et al. 2004; 
Contadini 2002; Dones et al. 2005; Ferret et al. 
2004; Geisler ; Rosenbaum et al. 2004; Zhang and 
Vidakovic 2005). 

Lloyd and Ries took a survey of 30 LCAs to 
identify what uncertainty propagation methods are 
being used (Lloyd and Ries 2007). They found that 
14 mentioned uncertainty explicitly, two performed 
qualitative uncertainty analysis, and only one per-
formed quantitative uncertainty analysis. Clearly 
these tools are not yet widespread, due primarily to 
challenges associated with characterizing uncertain-
ties.  

5.1 Monte Carlo simulation  
This appears to be the most popular approach in 
LCA. Some LCA software platforms, such as Si-
maPro and Umberto, now provide the ability to cal-
culate uncertainty using Monte Carlo analysis. The 
Ecoinvent LCA database includes quantitative un-
certainty values for parameters in many of its proc-
esses. 

5.2 Approximate analytical methods  
Analytical results are available under specific cir-
cumstances such as linear relationships between in-
put and output variables (which can be approxi-
mated for any problem using Taylor Series 
expansions in the First-Order Second-Moment 

method). This approach is less computationally ex-
pensive than Monte Carlo analysis, which can be an 
advantage if any part of the model required complex 
numerical modeling (Baker and Cornell 2003). It 
uses slightly more complex mathematics than Monte 
Carlo, however, which appears to have limited its 
adoption in LCA. 

5.3 Sensitivity analysis  
This calculation consists of systematically varying 
input parameters, to determine how sensitive the 
outputs are to each input. This is not a complete un-
certainty propagation procedure, but it is useful for 
understanding a system and it helps the analyst omit 
treatment of input parameters that are quickly seen 
to be unimportant to the final results. 

6 APPLICATION 

6.1 Integrating uncertainty analysis into LCA 
through source prioritization 

Integrating uncertainty into life cycle assessment 
begins with identification and prioritization of un-
certainty sources. Due to the high level of uncer-
tainty in many aspects of life cycle assessment, 
originating from both epistemic and aleatory 
sources, the prioritization of the sources can be lev-
eraged to help focus specific characterization efforts.  
With limited resources to investigate entire supply 
chains and complex production systems, the charac-
terization of “low hanging fruit” which make up the 
bulk of overall assessment uncertainty becomes in-
creasingly important.  

The identification and prioritization of uncer-
tainty in life cycle assessment begins with the con-
struction of a life cycle assessment model.  For con-
sistency across models and approaches, adherence to 
ISO 14040 series standards is followed.  This initial 
assessment is done for three reasons: 

 
1. Characterization of uncertainty can then be 

focused on the largest life cycle impact 
phases. 

2. Primary sources of uncertainty can be classi-
fied as primarily epistemic or aleatory in na-
ture. 

3. Results are used to gauge effects of uncer-
tainty on wider system impacts.  

Life cycle assessment focuses on the reduction of 
total impacts into groups of impacts allocated to 
each phase of the life cycle.  The majority of im-
pacts associated with highly durable, active systems 
such as buildings, automobiles, and airplanes are as-



sociated the use phase.  In such systems, the energy 
and emissions associated with raw material extrac-
tion, material production, and manufacturing and 
construction are small compared to overall life cycle 
impacts.  In the case of buildings, over 90% of life 
cycle energy consumption and emissions are associ-
ated with the use phase (Keoleian and Spitzley 
2006).  By focusing uncertainty characterization on 
the greatest life cycle phases, significant resources 
dedicated to uncertainty analysis can be saved. 

Within each life cycle phase, different types of 
uncertainty can dominate.  In the raw material ex-
traction, material production, and manufacturing 
phases, the processes and systems in question are 
well known.  Therefore, uncertainty in these phases 
arises from inaccurate datasets, limited sample sizes, 
and process modeling errors.  In the use and end-of-
life phases, uncertainty may be more random pri-
marily derived from inherent randomness in service 
life performance in a given load environment or 
functional obsolescence due to swings in consumer 
preference.  The classification of specific uncer-
tainty sources as epistemic or aleatory in nature not 
only allows for improved treatment of uncertainty 
but also a broad check to ensure that all relevant un-
certainties are identified. 

6.2 Demonstrating the need for uncertainty 
characterization and prioritization 

To illustrate the effects that uncertainty can have 
on life cycle assessment results, a case study built 
upon the life cycle assessment of a standard residen-
tial home built in the US is adopted.  Keoleian et al. 
(2001) quantified the life cycle impacts of a 2450 ft2 
(228 m2), two-story home built in the Midwestern 
US with an internal usable volume of 26,960 ft3 (763 
m3) over a life span of 50 years.  In addition to the 
structure itself, domestic services were provided by 
a set of common appliances and entertainment prod-
ucts including refrigerator/freezer, range, range 
hood, microwave, toaster, dishwasher, sump pump, 
cloths washer, cloths dryer, computer, TV, radio, 
and heated aquarium. 

The total primary energy consumption and total 
global warming potential (GWP) were inventoried 
over the material and construction phase, use phase, 
and demolition phase of the structure.  These are 
shown in Table 1.  Of total global warming potential 
in the use phase, 49.4% can be contributed to elec-
tricity generation with the remainder being contrib-
uted to natural gas production (precombustion emis-
sions) and combustion.  This results in a use phase 
global warming potential burden resulting from elec-
tricity consumption of approximately 406,000 kg 
CO2-eq or approximately 45% of total life cycle 

greenhouse gas emissions based on average US elec-
tricity production. 

 
Table 1. Residential home primary energy consumption and 
global warming potential by life cycle phase (Keoleian et al. 
2001). 

Using average US electricity production, 
Keoleian et al. failed to characterize the geographic 
uncertainty associated with this production.  As 
shown in Table 2, greenhouse gas emissions result-
ing from electricity production can vary considera-
bly depending on the geographic location of produc-
tion within the US.  Taken from Kim and Dale 
(2005), distinct differences in CO2 production alone 
(not considering other greenhouse gases) exist be-
tween the various North American Electric Reliabil-
ity Council regions throughout the US.  Greenhouse 
gases CO2 and NOx are shown in Table 2.  SOx 
emission values are included for further illustration. 

These emission differences are the result of vary-
ing fuel mixes used throughout the United States for 
electricity generation.  The US grid is broken into a 
number of distinct generation regions to increase 
system reliability.  In each geographic region, the 
generation portfolio is comprised of a different set of 
bituminous coal, sub-bituminous coal, lignite, petro-
leum, and natural gas fired plants along with nuclear 
and renewable sources.  Each generation technology 
and fuel has an associated life cycle greenhouse gas 
impact. 

 
Table 2. Selected environmental profiles in regional electricity 
systems based on consumption (Kim and Dale 2005). 

 

Incorporating the generation and emission differ-
ences between various NAERC regions into the use 
phase global warming potential profile shifts the re-



sulting life cycle greenhouse gas emission profile 
significantly (Table 3) for the residential house be-
ing investigated.  As shown, depending on the build-
ing site location (i.e. which NAERC region), the 
portion of GWP that can be attributed to use phase 
electricity production ranges from 35% in the ex-
treme northeastern US (NPCC) to 54% in Midwest-
ern US plains (SPP).   
  
 
Table 3. Impacts of incorporating regional generation and 
emission differences in use phase and total life cycle global 
warming potential (GWP) emissions. 

Considering such a wide range of differences, un-
certainty analysis can play a significant role in in-
forming sustainability-oriented design choices to en-
sure the robustness of decision processes and 
associated guidelines.  To illustrate, due to the high 
portion of electricity use phase global warming po-
tential seen in the Midwestern US plains (Kansas, 
Oklahoma, and parts of western Texas), design 
choices should focus on the constructing residential 
buildings and purchasing appliances which mini-
mize use phase electricity consumption.  In the 
northeastern US more emphasis should be placed on 
lowering GHG emissions in the material production 
and construction phases, or improving the insulation 
of the structure to reduce non-electricity energy con-
sumption for heating during the use phase. 

This application serves as one simple example of 
how variation in modeling data, and the inherent 
random nature in which use phase impacts are ac-
crued, can lead to significant differences in life cycle 
assessment results.  In dealing with this uncertainty, 
significant improvements can be made to the field of 
life cycle assessment and the decisions built upon 
such assessments.   

7 CHALLENGES 

7.1 Quantifying inputs 
There are many mature tools available for describing 
the distribution of possible values for an uncertain 
quantity, but actually quantifying the level of uncer-

tainty for the many inputs requires a major effort. 
One must synthesize across many sources of uncer-
tainty and use many types of information. Compre-
hensive uncertainty assessments will likely require 
subjective judgments for some aspects. 

7.2 Standardization  
Are treatments of uncertainties between design al-
ternatives consistent? Are quantified uncertainties 
representing what the user thinks they are? Are LCA 
users speaking about uncertainties with a common 
language? For systematic treatment of model uncer-
tainty, the uncertainty in a simplified model relative 
to a complex model might be quantified and stan-
dardized for use in industry analyses.  

The completion of process-based life cycle as-
sessments is governed by the ISO 14040 series of 
standards.  While the existence of uncertainty is ac-
knowledged within these standards with regard to 
life cycle inventories, no attempts are made to stan-
dardize the quantification or mitigation of uncer-
tainty.  Therefore, a final step for completion of an 
ISO-compliant LCA is a critical review by an inde-
pendent internal expert, an independent external ex-
pert, and an interested party panel.  Through rigor-
ous review by a series of experts and stakeholder 
groups, the validity of the life cycle assessment 
framework and results are confirmed.   

While no effort toward standardization is made 
by ISO, as part of the third-party review an “analysis 
of the indicator results, for example sensitivity and 
uncertainty analysis or the use of environmental 
data, including any implication for the results” must 
be conducted.  The public disclosure of such analy-
sis results is also required for any comparative asser-
tions based on life cycle assessment results (ISO 
1997). 

8 CONCLUSIONS 

A review and explanation of uncertainty quantifica-
tion in life cycle assessment has been performed. 
Uncertainty is undeniably present in many aspects of 
analysis, and treating it explicitly will aid in several 
ways. A general motivation for quantifying uncer-
tainties is to increase the transparency of LCA data 
and results, and to prevent erroneous decision-
making that might result from neglecting uncertain-
ties. An overview was provided of sources of uncer-
tainty, methods for quantifying uncertainty, and 
methods for propagating input and model uncertain-
ties in order to determine their effect on uncertain-
ties in the final estimated environmental impacts. A 
variety of motivations for quantifying uncertainty 
have been proposed and summarized, and an exam-



ple application has been presented to demonstrate 
that even if only the most critical uncertainty sources 
are identified, it is feasible to obtain useful informa-
tion about uncertainties in a given assessment. This 
illustrated the need to prioritize the many sources of 
uncertainty present in a given LCA. 

Before initiating further research efforts on this 
topic, one should first ask whether it is even possible 
to develop general guidance and recommendations 
for uncertainty treatment while recognizing that in-
dividual projects have varying needs and goals. LCA 
is a very flexible tool that was designed for use by a 
wide variety of industry sectors, processes, and us-
ers, the development of general guidelines; thus, de-
velopment of general recommendations for the 
treatment of uncertainty in LCA is a major chal-
lenge.  It may not be feasible to address all aspects 
of uncertainty modeling in all situations, but more 
work on specific topics may have a big impact on 
improving the value of LCA’s. For example, it 
would be valuable to further characterize the uncer-
tainty associated with processes common to many 
LCAs (i.e. impacts of production and use of electric-
ity, natural gas, and some basic materials).  From 
case studies, we can assess typical impacts of com-
mon uncertainties, and make recommendations re-
garding the impact of those uncertainties on a larger 
body of LCAs.  There are a variety of practical chal-
lenges to consider, but also many opportunities to 
further apply the tools of probabilistic modeling to 
this important and rapidly growing field. 
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